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Nonequilibrium Theory for Field-Flow Fractionation in 
Annular Channels 

JOE M. DAVIS 
DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY 
SOLlTHERN ILLINOIS UNIVERSITY 
CARBONDALE, ILLINOIS 62901 

AbStfact 

The principles of field-flow fractionation (FFF) and reasons for extending the 
FFF methodology from parallel-plate channels to annular channels (ANNCs) 
are briefly reviewed. A theory for the nonequilibrium plate height H of FFF zones 
in ANNCs is developed by extending the nonequilibrium theory of FFF to polar 
coordinates. The principal assumption in the theory is that component zones are 
localized near the ANNC walls by the general force F =Ah",  where A and n are 
constants and r is the radial coordinate. Equations for H are developed as 
functions of n,  the inner-to-outer radius ratio of the ANNC, and the fundamental 
FFF parameter, h A closed-form analytical solution to H is obtained when n = 1; 
the n # 1 solution must generally be expressed as a ratio of the integrals 
involved. These integrals can be approximated analytically, however, when 1 < 1. 
The functions for H are compared to their parallel-plate counterpart, and 
differences are rationalized. 

INTRODUCTION 

Field-flow fractionation (FFF) is a family of chromatographic-like 
separation methods well adapted to the separation and analytical 
characterization of macromolecules, colloids, emulsions, viruses, pro- 
teins, cells, and similar species. The principles of FFF are detailed 
elsewhere ( I ,  2) and are only briefly reviewed here. Separation by FFF is 
effected by the differential transport by laminar flow of sample com- 
ponents through an open channel of thin lateral dimensions, as shown in 
Fig. 1. Each sample component is localized or concentrated into a zone 
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b 

FIG. 1. (a) Open parallel-plate channel (OPPC) traditionally used in FFF. (b) Annular 
channel (ANNC). Reprinted with permission from Ref. 9, copyright 1985 American 

Chemical Society. 
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NONEOUlLlBRlUM THEORY FOR FIELD-FLOW FRACTIONATION 221 

of characteristic thickness near one channel wall (the accumulation wall) 
by a field or gradient which is perpendicular to the flow direction. The 
more localized components (zones) are carried by flow through the 
channel more slowly than less localized components because the flow 
approaches zero at the channel walls. 

The mathematical descriptions of fields (gradients) and laminar flow 
in FFF systems are usually fairly simple. This simplicity has facilitated 
the derivation from theory of fairly rigorous expressions for the behavior 
of component zones in FFF channels. Of particular importance are the 
equations that describe the relative rate of zone migration through the 
channel, as expressed by the retention ratio, and the dispersion of zone 
constituents along the flow coordinate, as expressed by the plate height. 
These equations depend on (among other things) the field strength, 
channel width, temperature, flow rate, and various physicochemical 
properties of the sample components. By fitting these equations to 
experimental measurements of the corresponding behavior, one can 
estimate these properties from theory, and thus use FFF as a tool for 
analytical characterization. 

The majority of FFF has been implemented with rectangular open 
parallel-plate channels (OPPCs) of the type shown in Fig. l(a). A small 
number of experiments, however, have been carried out in circular (3-7) 
and annular (8) channels. The annular channel (ANNC) shown in Fig. 
l(b) is a particularly attractive alternative to the OPPC, because several 
mathematically well-defined fields, e.g., shear, dielectrophoretic, and 
magnetophoretic, can be more easily generated in ANNCs than in 
OPPCs. The utilization of these fields with ANNCs would extend the 
FFF methodology to new sample properties and types. Other fields, e.g., 
thermal, flow, electrical, and sedimentation, can be generated in both 
OPPCs and ANNCs, with one channel type perhaps accruing slight 
advantages over the other in specific cases (9). 

A proper evaluation of the relative merits of OPPCs, ANNCs, and 
circular channels as conduits for FFF must include a judicious com- 
parison of the retention ratio and plate height. The latter attribute is a 
sum of several independent terms, the largest (and most important) of 
which is usually the nonequilibrium contribution. Theories were devel- 
oped some years ago for the retention ratio and nonequilibrium plate 
height of zones in OPPCs (20,ZZ) and circular channels (4,22) immersed 
in uniform, unidirectional fields. A theory for the retention ratio of zones 
in ANNCs was recently developed, and it addressed the retardation of 
zone migration rates by a radial field (9). A complementary theory that 
quantifies the principal source of zone dispersion in ANNCs is presented 
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222 DAVIS 

below. This work entails a derivation by nonequilibrium theory of the 
nonequilibrium plate height of FFF zones in ANNCs immersed in a 
radial field. 

THEORY 

The origin of nonequilibrium dispersion is the differential transport by 
flow of a zone's constituent members: zone members in fast streamlines 
move ahead of those in slow streamlines. The result is a broadening of 
the zone along the flow coordinate. The broadening is mitigated by the 
diffusive exchange of zone members among streamlines of different 
velocity. The relative magnitude of this dispersion is commonly ex- 
pressed in elutive methods, including FFF, as the nonequilibrium plate 
height, H = 021L. Here, u2 is that fraction of the total zone variance, which 
has many origins, that arises from differential flow, and L is the average 
distance the zone is carried by flow. 

The nonequilibrium plate height, H,, of zones in OPPCs, as derived 
from nonequilibrium theory, is (11, 13) 

where / i s  the characteristic zone thickness and w is the width of the 
OPPC, as shown in Fig. l(a), h = Llw = kTIFpw, (V,) and v are the 
average linear velocities of the carrier fluid (or simply carrier) and zone, 
F, is the uniform force that localizes the zone near the accumulation wall, 
and D is the constant diffusion coefficient of the component (zone). The 
quantity A, the fundamental parameter in FFF theory, is also defined 
by 

where kT is the average thermal energy of the carrier and Iw is the 
magnitude of work W done by the force F,, in moving zone constituents 
across gap w. The factors Y, and x, are complicated functions of h defined 
elsewhere (11) and are related by the expression x, = Yph2Rp, where 

is the expression for the retention ratio in OPPCs (10). The functionsf(h) 
and&) both approach 1 as h approaches zero. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
5
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



NONEQUlLlBRlUM THEORY FOR FIELD-FLOW FRACTIONATION 223 

The nonequilibrium theory for ANNCs developed below draws 
extensively from the theory for retention ratio R in ANNCs. The present 
treatment is restricted to the case in which each zone is carried by steady 
laminar flow in the axial direction and is concentrated near the 
accumulation wall by the time-independent force I;: 

F = A h "  (4) 

where r is the radial coordinate (shown in Fig. lb) and n has any real 
value. The values of n corresponding to the forces noted in the 
Introduction, for example, are n = 5 (shear), 3 (magnetophoretic and 
dielectrophoretic), 1 (electrical, flow, and thermal), and - 1 (sedimenta- 
tion). Coefficient A is positive when the zone is concentrated near the 
outer wall of the ANNC, and negative when the zone is concentrated near 
the inner wall. 

The nonequilibrium plate height H will be calculated from the 
continuity equation in polar coordinates, which is (14) 

- + - - ( r N , ) + - = O  ac 1 a aN, 
at  r dr az 

where c is the component concentration, t is time, z is the axial coordinate 
parallel to the flow direction (see Fig. lb), and N, and N, are, respectively, 
the one-dimensional radial and axial fluxes: 

ac 
az N ,  = V,C - D - (7) 

No angular flux appears in Eq. (5 )  because of radial symmetry. In Eq. (6), 
V, is the radial velocity of the component (zone) induced by force F and is 
defined by 

V, = F/f  = AD/kTr" (8) 

wheref = kT/D is the friction coefficient. The function V ,  in Eq. (7) is the 
linear velocity of the carrier, which in dimensionless coordinates is 
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where 

DAVIS 

and 

In Eqs. (9)-(11), p = r/r2 and pI = r,/r2, where rl and r2 are, respectively, 
the radii of the inner and outer walls of the ANNC, as shown in Fig. l(b). 
The function p is the reduced velocity, V,/v. The constants (V,) and 
v = R(V,) are, as before, the average linear velocities of the carrier and 
zone. The mean linear fluid velocity (V , )  was evaluated according to Eq. 
(12), the general formula for the cross-sectional average of the general 
function f ( r ) :  

One obtains, after expanding Eq. ( 5 )  by Eqs. (6) and (7) and equating 
aK ldz to zero, because the flow is steady, the following expression for the 
continuity equation: 

(13) - + = + c - +  ac Vr vr-+ ac v,-=o ac -+--+7 
dt  r d r  dr az ($ r ar az 

A minimal outline of nonequilibrium theory, as developed by Gid- 
dings, is presented here because (for reasons given below) two derivations 
of H are required to characterize ANNCs, and this outline will minimize 
redundancy. Specific details of the theory are best sought in Giddings' 
extensive applications of it to chromatography (15) and FFF in OPPCs 
(11, 13, 16). In brief, Eq. (13) will be simplified to an ordinary second- 
order differential equation by several approximations. From the solution 
to this differential equation and other functions, a flow-induced effective 
diffusion coefficient will be determined by the method reported by 
Giddings (13). This effective diffusion coefficient is a measure of the 
dispersion of zone constituents along the flow coordinate, i.e., the 
nonequilibrium broadening. From this effective diffusion coefficient, the 
plate height will be calculated. 

Because the mathematical form of the one-dimensional flux N, is 
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NONEQUlLlBRlUM THEORY FOR FIELD-FLOW FRACTIONATION 225 

identical in both Cartesian and polar coordinates, many of the equations 
developed for OPPCs also apply to ANNCs. In particular, the near- 
equilibrium approximation (23) 

is still valid, provided that v = R(Vz) is calculated in accordance with Eq. 
(12). The concentration c can also be expanded as a truncated power 
series about the quasi-equilibrium concentration c* (13): 

c = c*(l + E )  (15) 

where E = E ( ~ , z )  is the fractional departure of c from c*. (One determines 
the concentration c* by solving the differential equation N: = 0, where 

equals Eq. 6 with c replaced by c*; the derivation is given in Ref. 9.) 
The substitution of Eqs. (14) and (15) into Eq. (13) results in a second- 
order differential equation for the function E. 

By substituting Eq. (15) into Eq. (7), expanding, and interpreting the 
resultant terms, Giddings showed, by using Fick's first law in Cartesian 
coordinates, that the flow-induced effective diffusion coefficient, D, is 
(23) 

The plate height H = $/L was then calculated from Eq. (16) and the 
Einstein diffusion equation, a2 = 2Dt = 2DL/v, as (13) 

H = 2D/v (17) 

Thus, a solution to the differential equation for E is required to determine 
H from Eqs. (16) and (17). These equations also apply to ANNCs, 
provided that cross-sectional averages are calculated in accordance with 
Eq. (12). 

Two boundary conditions are needed to determine a unique solution to 
the differential equation; three possible boundary conditions exist. Two 
of them may be expressed as 
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228 DAVIS 

where the function 9 is defined below, and the third as 

( C * E )  = 0 (19) 

Equation (18) states that no radial flux crosses either ANNC wall and is 
derived by substituting Eq. (15) into N,* = 0 (Z3). Equation (19) states that 
mass is conserved along the radial coordinate, i.e., that (c) = (c*) (13). 

Some alternative definitions of H, derived from the above equations, 
will be useful foi later comparisons of H to Hp , Eq. (1). By introducing the 
function [similar to one previously defined for OPPC systems (13)) 

one may express H as 

where 

and 

The identity of the bracketed expressions in the numerators of Eq. (21) 
follows from Eq. (19) and the definitions of p, the reduced velocity (Eq. 9), 
and v = (c*V,)/(c*). The quantity g, is a constant of integration. The 
width w of the gap between the inner and outer ANNC walls has been 
defined in Eq. (22) as w = rz - rl = r2(l - pl), for later comparison to Eq. 
(1). The function 9, Eq. (20), will be useful below. 

Two solutions to concentration c* and retention ratio R exist., corre- 
sponding to the cases where n = 1 and n # 1 in Eq. (4) (9). Because H 
depends on both functions, two solutions to H also exist, corresponding 
to the same cases. The case for n # 1 is treated first. 
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CASE ONE n # 1 

The dimensionless concentration c* for this case is (9) 

c* = KI exp (Tap1-") 

where KI is a constant. The parameter a is 

1 a =  

where 
h(pf-" - 1) 

The upper and lower signs that multiply the exponential factor of Eq. (25) 
indicate that c* differs for inner-wall and outer-wall retention. The upper 
sign (in this case, negative) applies when the zone forms near the outer 
wall of the ANNC, and the lower sign applies when the zone forms near 
the inner wall. 

The first step is to express the continuity equation in terms of c*. Using 
Eqs. (26) and (27), one can express velocity V,, Eq. (8), as 

(n - 1)aD 
pnrz 

v,= f 

The derivatives dc*/dr and aK/dr  are calculated as 

where dpldr = r;'. By combining Eqs. (15) and (28)-(30), one can show 
that the various terms comprising Eq. (13) equal 

(n - 1)aD C *  
(1 + &)z 

P"+' 
- f  v c  

r 
I- 
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Equations (36) and (37) are approximations based on the inequality a&/& 
<< dE/dr, which applies because the zone's radial dimension is much 
smaller than its axial dimension. A similar approximation was used to 
derive Hp for zones in OPPCs (13). 

Combining Eqs. (14) and (31)-(37) with Eq. (13), one derives the 
following differential equation for E: 

Substituting Eq. (20) into Eq. (38), one obtains the alternative 
dimensionless form 

where p is defined by Eq. (9). The partial derivatives have been replaced 
by ordinary ones, because the functional dependence of E and 9 on z has 
been neglected. 

Equation (39) must now be solved for 4). An integrating factor for Eq. 
(39) is 

(40) p exp (Tap'-") = per" 
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where the function x 
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has been introduced to simplify subsequent equations. The integration of 
Eq. (39) yields 

where the lower integration limit 6 can equal p, or 1, in accordance with 
the boundary condition, Eq. (18). (The appropriate 6 value is addressed 
below.) The integration of Eq. (42) gives 

P 

@ - g ,  = J'le*" peT"(p - 1)dpdp (43) 
6 P  6 

where the constant g, is the value of @ at p = 6. Combining Eq. (43) with 
Eq. (23), one determines that the function Y for the n # 1 case is 

I 
p(p - 1)e'" ipclp pe'"(p - 1)dp dp dp 

(44) Y = - 2  I,, P 6  

Integrating Eq. (44) by parts and significantly simplifying the integration 
by Eq. (18), as detailed in an earlier work ( I I ) ,  one determines that 

By changing the integration variable in Eq. (45) from p to x,  Eq. (41), one 
obtains the desired result 
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290 DAVIS 

where 6' can equal a or apt-" and p has been explicitly expressed. 
From a consideration of nonequilibrium theory, both values for 6 and 

6' given above are possible integration limits for the above equations. 
Thus, theory does not provide guidelines for the determination of a 
unique solution to Y. It was determined empirically in this study, 
however, that the limits 6 and 6' must be 

6' = a (47) 

when zones are retained at the inner wall, and 

when zones are retained at the outer wall. With these (apparently 
arbitrary) assignments, the function Y behaves as expected in the A+O 
limit. If the assignments to 6 and 6' are reversed, however (e.g., if 6 = 1 
and 6' = a for the outer-wall calculation), then Y s q  instead of zero as 
expected, as h+O. 

Equation (46) cannot be evaluated analytically for any n of current 
interest (e.g., n = 5,  3, and - 1). Because adequate retention (i.e., R < 0.5) 
will not be attained unless A << 1 (9), the most interesting case of this 
equation corresponds to la1 >> 1, for which a power-series solution is 
computationally untractable because of the exponential terms. In 
general, Eq. (46) is perhaps best evaluated by numerical integration. An 
alternative approach, based on the rapid variation of the exponential 
terms in Eq. (46), allows one to derive analytical approximations to this 
equation when la1 >> 1 (A << 1). The procedure has been detailed 
elsewhere (9,17); only the results of this particular application are given 
here. 
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NONEQUlLlBRlUM THEORY FOR FIELD-FLOW FRACTIONATION 231 

Here, Yi, and YOut are the asymptotically correct Y functions for inner- 
and outer-wall retention, respectively,. that Eq. (46) approaches as h a .  

The function H can be calculated for the n # 1 case from the above 
equations, provided that retention ratio R is known. The expression for R 
is (9) 

Equation (51) also cannot be generally evaluated analytically for n values 
of interest, but the ratio of integrals approaches the limits (9) 

when la1 >> 1 and h << 1. Here, Ri, and R,,, are the retention ratios for 
inner- and outer-wall retention, respectively. 

Combining Eqs. (24), (49), (50), and (52), one obtains the following 
limiting expressions for function x 

where the subscripts are interpreted as before. As p p l ,  the ANNC is 
converted into an OPPC, for which H = Hp, Eq. (1). The limit of Eqs. (53) 
and (54), as pl+l, is 24h3, in agreement with Eq. (1). 
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CASE T W O  n = 1 

DAVIS 

This case is treated exactly as before, except the functions c* and R 
differ from their n # 1 counterparts. The dimensionless concentration 
profile c* here is (9) 

c* = K2p'B' ( 5 5 )  

where K2 is a constant. As before, the upper sign (in this case, positive) 
that multiplies the exponent in Eq. (55) applies when the zone forms near 
the outer ANNC wall, and the lower sign applies when the zone forms 
near the inner wall. The parameter p is positive and has the value 

where 

As before, the first objective is to express the continuity equation, Eq. 
(13), in terms of c*. Using Eqs. (56) and (57), one can express the radial 
velocity V,, Eq. (8), as 

The derivatives dc*/ar and aV,/ar are 

Combining Eqs. (58)-(60) with Eq. (15) and the terms in Eq. (13) that 
depend on r, one finds that 

v c  J30(1+&) c* 
P2 r: 

i- - *  r 
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Substituting Eqs. (14), (36), (37), and (61)-(65) into Eq. (13), one 
determines that the differential equation for E is 

which becomes, after one substitutes @, Eq. (20), for E 

A comparison of Eqs. (26), (39), (56), and (67) shows that the identity 

must exist if the differential equations derived for the n = 1 and n # 1 
cases are internally consistent. Equation (68) can indeed be confirmed by 
Taylor-series expansion. 

Equation (67) must be solved for @. An integrating factor for Eq. (67) is 
PI*@. The integration of Eq. (67) yields 

where, as before, 6 equals pI for outer-wall retention and 1 for inner-wall 
retention. The integration of Eq. (69) gives 
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where, as before, g, is the value of 0 at p = 6. Equation (70) is combined 
with the definition of Y, Eq. (23), to give 

I I,, pl*B(p - 1 )  1' p-(l*B) I' p'*B(p - 1 )  d p  dp dp 
b b 

Y = - 2  (71) 

A simplification of Eq. (71) by the integration-by-parts procedure 
previously referenced yields the expression 

2 I,: p-"*f I,' PlfB(P - 1) dP) dP 

I,, PIiB dP 
Y = 2  (72) I 

Equation (72) can be evaluated analytically. The result is 

* P) 2ad + 2(d_) l ) ( l  - p:*B)/(4 + p) 
( 1  - p:*B)(R@)Z E (a2 + 4+p 4 f p  

Y =  

-2b( a + -)( d 1 - pfip)/(6 f p) - 2 b d ~ f * ~  In p,/(6 f: p) 

+ e((a + d/2)( 1 - p:) + dp: In p l  - b( 1 - p:)/2)] , 

P # 2,4,  6, 8 for inner-wall accumulation 

6 + _ p  

(73) 

where 

(74) 
20 2 - R @ + -  

2 + p  
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(75) b = 2/(4 * p) 

and 

d = 28/(2 f p) 

The number e equals 

e = b - a  

(76) 

(77) 

when zones form near the inner ANNC wall and 

e = p:+8(bp: - a + d In pl) (78) 

when they form near the outer wall. Equations (73)-(78) are not expressed 
succinctly, but the direct substitution of Eqs. (74)-(78) into Eq. (73) does 
not result in much simplification. 

The evaluation of Eq. (73) from Eq. (72) involves extensive (but not 
difficult) calculations, and a margin for error clearly exists. The 
plausibility of Eq. (73), however, is suggested by several limiting cases. 
First, as (ha), Eq. (73) approaches the same limit for both 
numbers e given above, as it must; that limit is 

Y = [ ( l  + p:){(l + p:)/24 + p:/3 + e2/8) + e(5  + 32p: + 5p:)/36 
B-0  

This equation also describes the h+a behavior for the n # 1 case as well, 
because Y becomes independent of the radial force as LCO. (Inci- 
dentally, Eq. 79 would also apply to a nonretained chromatographic 
zone, if the channel were an ANNC.) Secondly, as pI+O, Y equals 

~yg+o.pl+o = 1/24 (80) 

and the function x = YR/(1 - p,)’ also equals 1/24. This number is the 
expected result for a circular channel of diameter 2w (15), which the 
ANNC becomes as p , 4 .  Finally, as p,+l, the ANNC becomes an OPPC 
of width w, for which x must equal 1/105 as p+O (ZZ). A few expansions 
are required to evaluate the pl+l limit. If one defines 
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then 

0 = -2  + 2y - y2/3 + (y4 + y5)/90 + 37y6/3780 + * * * (83) 

and 

l n p , =  (84) 

Substituting Eqs. (81)-(84) into Eq. (79), one finds that the bracketed 
expression [I in the latter equation approaches 

and the function x, Eq. (24), approaches 

as expected. 

H from the above equations. This expression is (9) 
One needs the appropriate expression for retention ratio R to calculate 

R = - ( M +  2 
Q, 4 f p (1 - p:*9(4 * p) 

p # 2, 4 for inner-wall retention (87) 

Equations (87) and (73)-(78) approach the following limits as b m  
( A d )  

2 (2p: + 0) ;  R,, = -(2 + e),  A << 1 (88) 
2 Ri, = - - 
PQ, PQ, 
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Combining Eqs. (88)-(90) and Eq. (24), one finds that the x function 
equals 

(2 
8h3(ln p1)3 
@(I - PI)* 

Xout = - 

when h << 1, where Rin, Rout, !Pin, You,, xi., and L,,, are interpreted as before. 
The limit of Eqs. (91) and (92), as p,+l, is 24h3, in agreement with Eq. 
(1). 

Several singularities exist in Eqs. (73)-(78) and (87) for the relatively 
large p values, p = 2,4,6, and 8, when zones are retained near the inner 
wall. Additional equations could be developed to account for these 
singularities, as was done for retention ratio R (9). Because these rs will 
generally correspond to R values very near unity, however, the additional 
(extensive) work required does not seem justified. If a plate height 
corresponding to one of these vs were ever required, it could be simply 
estimated by interpolating between two Hvalues, one calculated from a p 
slightly larger than, and the other calculated from a p slightly smaller 
than, the singularity in question. 

All computations were carried out on the IBM 3081 GX computer at 
Southern Illinois University. 

RESULTS AND DISCUSSION 

Equations (53), (54), (91), and (92) can be written in the general form 

where two functions g(pl,n) exist, one for inner-wall and one for outer- 
wall retention. Taking the common logarithm of both sides of Eq. (93), 
one obtains 

logx = 3 logh + logg(p,,n) (94) 

Thus, a plot of log x vs log A, in the h range over which these equations 
apply, is a straight line of slope 3 and intercept logg(p,,n). 

Figures 2-5 are plots of log x vs log h for the n values 5,3, - 1, and 1, 
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LOG h 

FIG. 2. Plot of log x vs log h for n = 5 (e.g., shear FFF). For h < 1, the x functions are, from 
top to bottom: xoUt, for pI = 0.1,0.2,0.4,0.6,0.8; x, (the central dashed curve); and kn, for p1 

= 0.8,0.6,0.4, 0.2, and 0.1. 

and the p1 values 0.8,0.6, 0.4,0.2, and 0.1. The bold dashed curve in the 
center of each figure is x p ,  which corresponds to p1 = 1. The solid curves 
in Figs. 2-4 were computed numerically from Eqs. (46) and (51) with 
Simpson’s rule. (Some scaling of the integrals was required to prevent 
numerical underflow and overflow.) The dashed lines in Figs. 2-4 were 
evaluated from the analytical approximations, Eqs. (53) and (54). The 
solid curves in Fig. 5 were calculated from Eqs. (73)-(78) and (87); the 
dashed lines were determined from the approximations, Eqs. (91) and 
(92). The approximations are best when h < 1 and pI 2: 1 (i.e., when la1 
and fl > 1). 

< xp and 
xoUt > when n is positive, but xin > x,, and xoU, < xp when n is negative. 
Furthermore, the differences between xn and xp, and xoUt and xp, increase 

Several trends can be deduced from Figs. 2-5. When h < 1, 
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LOG x 

LOG h 

FIG. 3. Plot of log x vs log A for n = 3 (e.g., dielectrophoretic and magnetophoretic FFF). 
Otherwise, same as Fig. 2. 

with decreasing pI and increasing Ini. These trends are comparable to 
those deduced from similar plots of retention ratio R vs h (9). In addition, 
as A+co and R-1, the functions xn and x,,ut both approach the limiting x 
value predicted by Eqs. (24) and (79). 

The dependence of x on A can be simply rationalized when h << 1. The 
random-walk model of nonequilibrium dispersion predicts that the zone 
variance d of well-retained FFF zones is proportional to the product of 
two terms: the time required for diffusive exchange among streamlines, 
which varies as the square of the zone thickness, and the zone velocity, 
which varies linearly with this thickness (18). Thus, Hand x vary with the 
cubic power of the zone thickness when h << 1. Furthermore, since the 
zone thickness varies inversely with the local force near the accumulation 
wall, which itself varies inversely with A, x varies as the cubic power of A, 
as confirmed by Eqs. (l), (53), (54), (91), and (92) when A << 1. 
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LOG h 

FIG. 4. Plot of log x vs log h for n = - 1 (e.g., sedimentation FFF). For h < 1, the x functions 
are, from top to bottom: &". for p~ = 0.1,0.2,0.4,0.6,0.8; x, (the central dashed curve); and 

&ub for pl = 0.8,0.6,0.4, 0.2, and 0.1. 

The thickness of zones in both OPPCs and ANNCs decreases as the 
force strength near the accumulation wall increases. At constant A, the 
radial force F, Eq. (4), is larger near the inner wall and smaller near the 
outer wall of the ANNC than the uniform force Fp in the OPPC when n is 
positive. The force strengths are reversed when n is negative. Further- 
more, the differences between F and F,, near the accumulation wall 
increase as pI decreases. When h < 1, the force strength in the immediate 
vicinity of the accumulation wall principally determines the zone 
thickness. As argued above, the values of the x functions are determined 
by this zone thickness and, consequently, by these local force strengths 
when h < 1. 
As h+a, the behavior of the x functions cannot be justified by the 

explanation given above, because the bulk of the zone is not localized 
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LOG Y 

LOG h 

FIG. 5. Plot of log x vs log A for n = 1 (e.g., thermal, flow, and electrical FFF). Otherwise, 
same as Fig. 2. 

near the accumulation wall. For example, the x’s in Figs. 2-5 exhibit local 
maxima near h z 0.1; the maxima are most pronounced when n is large 
and positive and p1 < 1. As h is further increased, the functions xoUt and xp 
monotonically decrease to constant values. The function xn, however, 
either monotonically decreases to a constant value, or first decreases, 
then passes through a minimum, and finally monotonically increases to 
a constant value. The latter behavior is most pronounced for small pI and 
small, especially negative, n. 

When h < 1, the behavior of x is largely governed by the magnitude of 
force F near the accumulation wall. The variation of the carrier velocity 
across gap w increasingly dictates the behavior of x as h is increased. As h 
is increased, a large fraction of the zone eventually relaxes into the chan- 
nel midsection near the maximum carrier velocity. Here, the streamline 
velocities are similar and do not strongly vary, as they do near the 
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accumulation walls. The similarity of the streamline velocities outweighs 
the increase in zone thickness, and x decreases slightly, consequently 
passing through a maximum. 

are observed when p1 < 1 principally because, 
as p, decreases, dV,/dp increases very near the inner wall, and the 
maximum carrier velocity shifts toward the inner wall. (A plot of V,/(V,) 
vs channel width w for various pi's is given in Ref. 9.) When pI << 1, xjn 
increases rapidly with increasing h because the streamline velocities very 
near the inner wall vary significantly. The increase is largest for large 
positive n because the zone bulk is localized in this inner-wall region. As 
h is further increased, the zone relaxes away from the wall; only a small 
relaxation is required, when p1 << 1, for the zone bulk to be entrained by 
streamlines with similar velocities near the carrier maximum. The result 
is a rapid decrease in xin. The minima in xjn are observed, possibly 
because in these cases the zone is principally localized near the velocity 
maximum. This explanation seems more plausible for small, rather than 
large, positive n and most plausible for negative n, because in this case the 
zone concentration is actually higher in the maximum velocity region 
than near the inner ANNC wall. The minima are indeed most pro- 
nounced for negative n. 

A comparison of Figs. 2-5 to similar plots of log R vs log h in Ref. 9 
shows that, at constant h and pl, the departure of H from H, is much 
greater than the departure of R from R,. This behavior is observed (at 
least for small A) because R depends on the first power of the 
characteristic zone thickness, whereas H depends, as observed above, on 
the third power of this thickness. 

In general, the ANNC offers definite advantages over the OPPC when 
R < R, and H < H,. Most significantly, the peak capacity of the ANNC is 
greater than that of the OPPC under these conditions, and multicom- 
ponent mixtures may be more efficiently resolved. Based on this study, 
and the previous one on the retention ratio R, one can conclude that R 
and especially H favorably depart from their parallel-plate counterparts 
when n is large, p1 is small, and zones form near the inner ANNC wall, 
for n > 0, and near the outer wall, for n < 0. The differences can be 
exploited by decreasing p1 to small values, although some shortcomings 
exist when pI < 1 (9). The advantage is perhaps most significant for shear 
FFF (n = 5 )  because the shear force always focuses components near the 
inner ANNC wall where R and H are pronouncedly less than Rp and H,. 
Little advantage is expected for dielectrical FFF (n = 3), however, 
because pearl-chain formation is expected to limit extensively inner-wall 
retention (19). Magnetic FFF (n = 3) is likely to be subject to the same 

The large maxima in 
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limitation, although this subject has not been eamined in detail. Smaller 
advantages are anticipated for electrical, thermal, and flow FFF (n = 1) 
and sedimentation FFF (n = -l), but such advantages are realizable by 
judicious design of the ANNC and control over the experimental 
conditions. 

QLOSSARY 

a 
A 
ANNC 
b 

c* 
d 
D 
D 
e 

C 

(2 - R@ + 2842 * p))/(2 k p) 
coefficient indicating magnitude and direction of force F 
annular channel 
244 k P) 
concentration 
quasi-equilibrium concentration 

diffusion coefficient 
effective diffusion coefficient defined by Eq. (16) 
Eq. (77) for inner-wall retention, and Eq. (78) for outer-wall 
retention 
friction coefficient, kT/D 
radial force, Ah" 
constant force in OPPC 
value of+  at p = 6 
nonequilibrium plate height of zones in ANNCs 
nonequilibrium plate height of zones in OPPCs 
Boltzmann's constant 
zone thickness in OPPCs 
average distance of zone migration 
power to which r is raised in equation for force F 
one-dimensional radial flux 
one-dimensional axial flux 
open parallel-plate channel 
radial coordinate 
inner radius of ANNC 
outer radius of ANNC 
retention ratio of zones in ANNCs 
R for inner-wall retention 
R for outer-wall retention 
retention ratio of zones in OPPCs 
time 

2842 k p) 
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absolute temperature 
radial velocity of zone constituents induced by force F 
axial velocity of carrier fluid 
average velocity of carrier fluid 
channel width 
work required to carry zone constituents across gap w 

axial coordinate 

-(h In pJ1 
lower integration limit of Y integral 
S value, expressed in terms of variable x 
fractional departure of c from c* 

upl-n 

l/(h(P:-" - 1)) 

(1 - P m  P1 

kTll wl 
reduced velocity, VJv 
average zone velocity 
reduced radial coordinate, rh2 
rl lr2 
that fraction of the total zone variance originating from 
differential axial flow 
function of E on which Y depends 

nonequilibrium coefficient in equation, H = xw2(V,)/D 
x coefficient for inner-wall retention 
x coefiicient for outer-wall retention 
x coefficient for parallel-plate channel 
nonequilibrium coefllcient in equation, H = Y&/D 
Y coefficient for inner-wall retention 
Y coefficient for outer-wall retention 
Y coefficient for parallel-plate channel 

1+p:+0 
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