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Annular Channels
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DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY
SOUTHERN ILLINOIS UNIVERSITY
CARBONDALE, ILLINOIS 62901

Abstract

The principles of field-flow fractionation (FFF) and reasons for extending the
FFF methodology from parallel-plate channels to annular channels (ANNCs)
are briefly reviewed. A theory for the nonequilibrium plate height H of FFF zones
in ANNC: is developed by extending the nonequilibrium theory of FFF to polar
coordinates. The principal assumption in the theory is that component zones are
localized near the ANNC walls by the general force F = 4/r", where 4 and n are
constants and r is the radial coordinate. Equations for H are developed as
functions of n, the inner-to-outer radius ratio of the ANNC, and the fundamental
FFF parameter, A. A closed-form analytical solution to H is obtained whenn = 1;
the n # 1 solution must generally be expressed as a ratio of the integrals
involved. These integrals can be approximated analytically, however, when A < 1.
The functions for H are compared to their parallel-plate counterpart, and
differences are rationalized.

INTRODUCTION

Field-flow fractionation (FFF) is a family of chromatographic-like
separation methods well adapted to the separation and analytical
characterization of macromolecules, colloids, emulsions, viruses, pro-
teins, cells, and similar species. The principles of FFF are detailed
elsewhere (1, 2) and are only briefly reviewed here. Separation by FFF is
effected by the differential transport by laminar flow of sample com-
ponents through an open channel of thin lateral dimensions, as shown in
Fig. 1. Each sample component is localized or concentrated into a zone
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FIG. 1. (a) Open parallel-plate channel (OPPC) traditionally used in FFF. (b) Annular
channel (ANNC). Reprinted with permission from Ref. 9, copyright 1985 American
Chemical Society.
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of characteristic thickness near one channel wall (the accumulation wall)
by a field or gradient which is perpendicular to the flow direction. The
more localized components (zones) are carried by flow through the
channel more slowly than less localized components because the flow
approaches zero at the channel walls.

The mathematical descriptions of fields (gradients) and laminar flow
in FFF systems are usually fairly simple. This simplicity has facilitated
the derivation from theory of fairly rigorous expressions for the behavior
of component zones in FFF channels. Of particular importance are the
equations that describe the relative rate of zone migration through the
channel, as expressed by the retention ratio, and the dispersion of zone
constituents along the flow coordinate, as expressed by the plate height.
These equations depend on (among other things) the field strength,
channel width, temperature, flow rate, and various physicochemical
properties of the sample components. By fitting these equations to
experimental measurements of the corresponding behavior, one can
estimate these properties from theory, and thus use FFF as a tool for
analytical characterization.

The majority of FFF has been implemented with rectangular open
parallel-plate channels (OPPCs) of the type shown in Fig. 1(a). A small
number of experiments, however, have been carried out in circular (3-7)
and annular (8) channels. The annular channel (ANNC) shown in Fig.
1(b) is a particularly attractive alternative to the OPPC, because several
mathematically well-defined fields, e.g., shear, dielectrophoretic, and
magnetophoretic, can be more easily generated in ANNCs than in
OPPCs. The utilization of these fields with ANNCs would extend the
FFF methodology to new sample properties and types. Other fields, e.g.,
thermal, flow, electrical, and sedimentation, can be generated in both
OPPCs and ANNCs, with one channel type perhaps accruing slight
advantages over the other in specific cases (9).

A proper evaluation of the relative merits of OPPCs, ANNCs, and
circular channels as conduits for FFF must include a judicious com-
parison of the retention ratio and plate height. The latter attribute is a
sum of several independent terms, the largest (and most important) of
which is usually the nonequilibrium contribution. Theories were devel-
oped some years ago for the retention ratio and nonequilibrium plate
height of zones in OPPCs (10, 11) and circular channels (4, 12) immersed
in uniform, unidirectional fields. A theory for the retention ratio of zones
in ANNCs was recently developed, and it addressed the retardation of
zone migration rates by a radial field (9). A complementary theory that
quantifies the principal source of zone dispersion in ANNC:s is presented
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below. This work entails a derivation by nonequilibrium theory of the
nonequilibrium plate height of FFF zones in ANNCs immersed in a
radial field.

THEORY

The origin of nonequilibrium dispersion is the differential transport by
flow of a zone’s constituent members: zone members in fast streamlines
move ahead of those in slow streamlines. The result is a broadening of
the zone along the flow coordinate. The broadening is mitigated by the
diffusive exchange of zone members among streamlines of different
velocity. The relative magnitude of this dispersion is commonly ex-
pressed in elutive methods, including FFF, as the nonequilibrium plate
height, H = ¢?/L. Here, 6’ is that fraction of the total zone variance, which
has many origins, that arises from differential flow, and L is the average
distance the zone is carried by flow.

The nonequilibrium plate height, H,, of zones in OPPCs, as derived
from nonequilibrium theory, is (11, 13)

H,=¥,/>/D = y,wXV,)/D = 2433 (\wXV,/D (1)

where / is the characteristic zone thickness and w is the width of the
OPPC, as shown in Fig. 1(a), A= //w = kT/F,w, {V,) and v are the
average linear velocities of the carrier fluid (or simply carrier) and zone,
F, is the uniform force that localizes the zone near the accumulation wall,
and D is the constant diffusion coefficient of the component (zone). The
quantity A, the fundamental parameter in FFF theory, is also defined
by

A= kT/|W) 2

where kT is the average thermal energy of the carrier and |W] is the
magnitude of work W done by the force F, in moving zone constituents
across gap w. The factors ¥, and y, are complicated functions of A defined
elsewhere (I1) and are related by the expression x, = ¥,A’R,, where

R, = VKV, = 6}»<coth (5%) - 2x) = 6Ag(\) 3)

is the expression for the retention ratio in OPPCs (10). The functions f(A)
and g(A) both approach 1 as A approaches zero.
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The nonequilibrium theory for ANNCs developed below draws
extensively from the theory for retention ratio R in ANNC:s. The present
treatment is restricted to the case in which each zone is carried by steady
laminar flow in the axial direction and is concentrated near the
accumulation wall by the time-independent force F:

F=A/r 4)

where r is the radial coordinate (shown in Fig. 1b) and » has any real
value. The values of n corresponding to the forces noted in the
Introduction, for example, are n = 5 (shear), 3 (magnetophoretic and
dielectrophoretic), 1 (electrical, flow, and thermal), and —1 (sedimenta-
tion). Coefficient 4 is positive when the zone is concentrated near the
outer wall of the ANNC, and negative when the zone is concentrated near
the inner wall.

The nonequilibrium plate height H will be calculated from the
continuity equation in polar coordinates, which is (14)

dc , 10 oN,
atrar N+,

=0 (5)

where ¢ is the component concentration, ¢ is time, z is the axial coordinate
parallel to the flow direction (see Fig. 1b), and N, and N, are, respectively,
the one-dimensional radial and axial fluxes:

N.=Ve-D3 (6)
—ve_plc
N,=Ve-DZ (7

No angular flux appears in Eq. (5) because of radial symmetry. In Eq. (6),
¥, is the radial velocity of the component (zone) induced by force F and is
defined by

V,=F/f = AD/kTr" (8)

where f = kT/D is the friction coefficient. The function V, in Eq. (7) is the
linear velocity of the carrier, which in dimensionless coordinates is

V=252 (1 - p - 01np) = RV )
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where
1-pj
= 10
0 np, (10)
and
d=1+pi+0 (11)

In Egs. (9)-(11), p = #/r, and p, = r,/r,, where r, and r, are, respectively,
the radii of the inner and outer walls of the ANNC, as shown in Fig. 1(b).
The function p is the reduced velocity, ¥,/v. The constants {V,) and
v = R{V,) are, as before, the average linear velocities of the carrier and
zone. The mean linear fluid velocity {¥,) was evaluated according to Eq.
(12), the general formula for the cross-sectional average of the general
function f(r):

r. 1
Sy = 2[ " rfynted = 1) = 2 afteseddo/1 = 0 (12)
n 1

One obtains, after expanding Eq. (5) by Egs. (6) and (7) and equating
0V, /0z to zero, because the flow is steady, the following expression for the
continuity equation:

wt Sy ettt et et e

dc 6V, ac dc _ D(azc 1 dc 62c> (13)

A minimal outline of nonequilibrium theory, as developed by Gid-
dings, is presented here because (for reasons given below) two derivations
of H are required to characterize ANNCs, and this outline will minimize
redundancy. Specific details of the theory are best sought in Giddings’
extensive applications of it to chromatography (/5) and FFF in OPPCs
(11, 13, 16). In brief, Eq. (13) will be simplified to an ordinary second-
order differential equation by several approximations. From the solution
to this differential equation and other functions, a flow-induced effective
diffusion coefficient will be determined by the method reported by
Giddings (13). This effective diffusion coefficient is a measure of the
dispersion of zone constituents along the flow coordinate, ie., the
nonequilibrium broadening. From this effective diffusion coefficient, the
plate height will be calculated.

Because the mathematical form of the one-dimensional flux N, is
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identical in both Cartesian and polar coordinates, many of the equations
developed for OPPCs also apply to ANNCs. In particular, the near-
equilibrium approximation (13)

dc _  O%* dc*
at b FIEAF P (14)
is still valid, provided that v = R{V,) is calculated in accordance with Eq.
(12). The concentration ¢ can also be expanded as a truncated power
series about the quasi-equilibrium concentration c* (13):

c=c*(1+¢) (15)

where € = €(r,z) is the fractional departure of ¢ from c*. (One determines
the concentration c* by solving the differential equation N* = 0, where
N?* equals Eq. 6 with ¢ replaced by c*; the derivation is given in Ref. 9.)
The substitution of Eqgs. (14) and (15) into Eq. (13) results in a second-
order differential equation for the function .

By substituting Eq. (15) into Eq. (7), expanding, and interpreting the
resultant terms, Giddings showed, by using Fick’s first law in Cartesian
coordinates, that the flow-induced effective diffusion coefficient, D, is
3

{c*V,e)

D=- {c*>0 Inc*/0z

(16)

The plate height H = ¢%/L was then calculated from Eq. (16) and the
Einstein diffusion equation, o> = 2Dt = 2DL/v, as (13)

H =2D/v (17)

Thus, a solution to the differential equation for € is required to determine
H from Egs. (16) and (17). These equations also apply to ANNCs,
provided that cross-sectional averages are calculated in accordance with
Eq. (12).

Two boundary conditions are needed to determine a unique solution to
the differential equation; three possible boundary conditions exist. Two
of them may be expressed as

=0 (18)
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where the function ¢ is defined below, and the third as
{c*e¢) =0 (19)

Equation (18) states that no radial flux crosses either ANNC wall and is
derived by substituting Eq. (15) into N} = 0 (13). Equation (19) states that:
mass is conserved along the radial coordinate, i.c., that {c) = {c*) (I3).
Some alternative definitions of H, derived from the above equations,
will be useful for later comparisons of H to H,, Eq. (1). By introducing the
function [similar to one previously defined for OPPC systems (13)]

eD

¢ = V9 Inc*/az (20)
one may express H as
H= -2 <c<‘:1:§>> r%Dv PR Cad (" —<3(>¢ ) rlé')v @1
_Whv YR WK ) 22
D (-p) D D
where
¥ = —2{c*(n = 1)(¢ — g)/Kc*) (23)
and
x = YR/(1 —p))? (24)

The identity of the bracketed expressions in the numerators of Eq. (21)
follows from Eq. (19) and the definitions of y, the reduced velocity (Eq. 9),
and v = {c*V,)/{c*). The quantity g, is a constant of integration. The
width w of the gap between the inner and outer ANNC walls has been
defined in Eq. (22) as w = r, — r, = r{1 — p,), for later comparison to Eq.
(1). The function ¢, Eq. (20), will be useful below.

Two solutions to concentration c¢* and retention ratio R exist, corre-
sponding to the cases where n = 1 and n # 1 in Eq. (4) (9). Because H
depends on both functions, two solutions to H also exist, corresponding
to the same cases. The case for n # 1 is treated first.
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CASE ONE:n # 1
The dimensionless concentration ¢* for this case is (9)
c* =K, exp(Fap'™) (25)
where K, is a constant. The parameter q is

1

a=s ——— (26)
where
Mpi™" = 1)
kT kT (1 — n)kT
A== = 27
W1 [P, W = el @)
n r"

The upper and lower signs that multiply the exponential factor of Eq. (25)
indicate that ¢* differs for inner-wall and outer-wall retention. The upper
sign (in this case, negative) applies when the zone forms near the outer
wall of the ANNC, and the lower sign applies when the zone forms near
the inner wall.

The first step is to express the continuity equation in terms of ¢*. Using
Egs. (26) and (27), one can express velocity V,, Eq. (8), as

v,= 4 11D (28)
P
The derivatives dc*/dr and dV,/0r are calculated as
Oc* _9c*dp_ , (n—Na ,
ar dp Or * p"r, (29)
oV, _ 9oV, dp _ T n(n — NaD (30)

or dp or p"tir?

where dp/dr = r;'. By combining Egs. (15) and (28)-(30), one can show
that the various terms comprising Eq. (13) equal

V.c
r

—_ *
-z pnl?“”(l +o) & 31)
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aV -7 n(n — aD(1 +¢€) c*

¢ or pm! r 4

% (n —pf)“D((" p‘)°(1+ )+_)c7;‘_ (33)
S AT 28
e P
V,%zV,% (36)

Equations (36) and (37) are approximations based on the inequality de/0z
< 0de/dr, which applies because the zone’s radial dimension is much
smaller than its axial dimension. A similar approximation was used to
derive H, for zones in OPPCs (13).

Combining Egs. (14) and (31)-(37) with Eq. (13), one derives the
following differential equation for ¢:

,V,—v dinc* _ d% ( (n—l)a.)@
At S =t ) 5 (38)

Substituting Eq. (20) into Eq. (38), one obtains the alternative
dimensionless form

2 —
-1 =ﬂ+(é—i—(" pnl)“)%’ (39)

where p is defined by Eq. (9). The partial derivatives have been replaced
by ordinary ones, because the functional dependence of € and ¢ on z has
been neglected.

Equation (39) must now be solved for ¢. An integrating factor for Eq.
(39) is

pexp(Fap'™") = pe** (40)
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where the function x
x=ap'™" (41)

has been introduced to simplify subsequent equations. The integration of
Eq. (39) yields

pe™r 42 = f pe™(u ~ 1)dp (42)

where the lower integration limit 8 can equal p, or 1, in accordance with
the boundary condition, Eq. (18). (The appropriate § value is addressed
below.) The integration of Eq. (42) gives

&= [ e [ pe™tu - 1o do 43)

where the constant g, is the value of ¢ at p = 8. Combining Eq. (43) with
Eq. (23), one determines that the function ¥ for the n # 1 case is

! Fx peﬁ:x P Fx
[ ote =1 [" £ 7 pem(u - dp dp dp
v=-22 e (44)

1
J pe**dp
Pl

Integrating Eq. (44) by parts and significantly simplifying the integration
by Eq. (18), as detailed in an earlier work (/7), one determines that

J:np *(f pe*‘(u—l)dp) dp

f pe**dp
P1

¥ =2 (45)

By changing the integration variable in Eq. (45) from p to x, Eq. (41), one
obtains the desired result

{(1 — n)al/(l—")R¢}2 J;p —-n {J-' x(”‘”)/(l—n)e;x
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(1 ~R®/2- (E)MM) G : " (i)) dx}z d

a
J e x(n+l)/(l—n)e¥x dx
apy

X

(46)

where 8 can equal a or ap;™ and p has been explicitly expressed.

From a consideration of nonequilibrium theory, both values for 8 and
8’ given above are possible integration limits for the above equations.
Thus, theory does not provide guidelines for the determination of a
unique solution to W. It was determined empirically in this study,
however, that the limits 8 and 8’ must be

8 =aqa 47
when zones are retained at the inner wall, and
8=p
& =ap}™ (48)

when zones are retained at the outer wall. With these (apparently
arbitrary) assignments, the function ¥ behaves as expected in the A—»0
limit. If the assignments to 8 and &' are reversed, however (e.g., if 6 = 1
and 8’ = a for the outer-wall calculation), then ¥Y—0, instead of zero as
expected, as A—»0.

Equation (46) cannot be evaluated analytically for any n of current
interest (e.g., n = 5, 3, and —1). Because adequate retention (i.e., R < 0.5)
will not be attained unless A < 1 (9), the most interesting case of this
equation corresponds to |a} > 1, for which a power-series solution is
computationally untractable because of the exponential terms. In
general, Eq. (46) is perhaps best evaluated by numerical integration. An
alternative approach, based on the rapid variation of the exponential
terms in Eq. (46), allows one to derive analytical approximations to this
equation when |a| > 1 (A < 1). The procedure has been detailed
elsewhere (9, 17); only the results of this particular application are given
here.

(200 ¥
¥, = <(n = ‘1)0.) , Ak (49)
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2

2
m) s A1 (50)

¥ou = (

Here, ¥,, and ¥, are the asymptotically correct ¥ functions for inner-
and outer-wall retention, respectively,.that Eq. (46) approaches as A—»0.

The function H can be calculated for the n # 1 case from the above
equations, provided that retention ratio R is known. The expression for R

is (9)
jn|_ x(n+l)/(l—n)e¥x(1 _ ({)2/“_") _ 0 In (.{)) dx
apy " a (1—-n) a

a
J’ x(n+l)/(l—n)eIx dx
ap

I-n
1

2
R=4%

(1)

Equation (51) also cannot be generally evaluated analytically for n values
of interest, but the ratio of integrals approaches the limits (9)

2

2p7”!
o = Dod

Rn= == Do

(2p1+0); R, = 2+0), Akl

(52)

when [a| > 1 and A < 1, Here, R, and R, are the retention ratios for
inner- and outer-wall retention, respectively.

Combining Egs. (24), (49), (50), and (52), one obtains the following
limiting expressions for function ¥,

_ -8\ (1 — oy )’ :

8)\.3 ( l_p'll—l )3
out = — 2+ 60), Akl 54
Xou = T — o2 \(n = Dp) 2O 4

where the subscripts are interpreted as before. As p,—1, the ANNC is
converted into an OPPC, for which H = H,, Eq. (1). The limit of Egs. (53)
and (54), as p—>1, is 24A%, in agreement with Eq. (1).
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CASE TWO:n =1

This case is treated exactly as before, except the functions ¢* and R
differ from their n # 1 counterparts. The dimensionless concentration
profile ¢* here is (9)

c* = Ky p** (55)

where K, is a constant. As before, the upper sign (in this case, positive)
that multiplies the exponent in Eq. (55) applies when the zone forms near
the outer ANNC wall, and the lower sign applies when the zone forms
near the inner wall. The parameter § is positive and has the value

B=~-(AInp)™ (56)
where

_kT _ kT _ _ _ kT
W J”Zmd, l411n p,
o r

A

(57)

As before, the first objective is to express the continuity equation, Eq.
(13), in terms of ¢*. Using Eqs. (56) and (57), one can express the radial
velocity V,, Eq. (8), as

gD
=+ BD 58
Pr; (38)
The derivatives dc*/dr and dV,/or are
dc* Be*
_— = 4 =
or T pr, 59
ov, _ — BD
? = + 'E% (60)

Combining Egs. (58)-(60) with Eq. (15) and the terms in Eq. (13) that
depend on 7, one finds that

Vie ., BD(L+e)c*

r p? r}

(61)
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V. 2 BD(+e) c*

¢ or 0 (62)

v Buvn s )5 (63)
% [%(EB+1)(1+8)+235) Zle @
e tiave)g (65)

Substituting Eqs. (14), (36), (37), and (61)-(65) into Eq. (13), one
determines that the differential equation for ¢ is

2 Vi—vdlnc* %  1+PB de

7D 9z  9p’ p Op (66)
which becomes, after one substitutes ¢, Eq. (20), for €
d’o ., 1+Bdo
—_— 1 = =1 —_—r ¥

A comparison of Eqgs. (26), (39), (56), and (67) shows that the identity

tim G = (1n ) (68)

must exist if the differential equations derived forthen =1 and n # 1
cases are internally consistent. Equation (68) can indeed be confirmed by
Taylor-series expansion.

Equation (67) must be solved for ¢. An integrating factor for Eq. (67) is
p'*?. The integration of Eq. (67) yields

p'ﬂ‘;—‘g = ["o'stu - 1)dp (69)
8

where, as before, 8 equals p, for outer-wall retention and 1 for inner-wall
retention. The integration of Eq. (69) gives
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P P
0-g = J; p-(ltﬂ)fs p't8(n — 1) dp dp (70)

where, as before, g, is the value of ¢ at p = 8. Equation (70) is combined
with the definition of ¥, Eq. (23), to give

1
f p!th(u — 1) fpp"'*"’fp p'*8(u — 1) dpdp dp
o 8 8
v=-2 7D

1
f 0'*8 dp
Pl

A simplification of Eq. (71) by the integration-by-parts procedure
previously referenced yields the expression

1 2
f p"‘*”’(fpp‘*”(u - l)dp) dp
=2 il 5
1
f p'*Pdp
|

Equation (72) can be evaluated analytically. The result is

g 22%B) [(,, 4+ _2ad +2( L)) - otenya = )

(1 - pi**)(RD)? 4+P 4+8
+ b*(1 — pi*P)/(8 + B) — d*p{** In’ p,/(4 £ PB)
* Zd( o5t “)(p‘.‘*“ In p,)/(4 £ B) £ (p{* - 1)/B
4+8 -
—2b(a + d )(l — p$t8)/(6 + B) — 2bdp$t*Inp,/(6 + B)
6+p ! AT

+el(@+d/2(1 - p}) + dptInp, ~ b(1 - p1)/2) |
B # 2, 4, 6, 8 for inner-wall accumulation (73)

where

(2 R® + ) (2 £ B) (74)

+B
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b=2/(4+B) (75)
and
d=26/(2 % B) (76)
The number e equals
e=b-a a7

when zones form near the inner ANNC wall and
e=p{**(bpi —a+dlnp) (78)

when they form near the outer wall. Equations (73)-(78) are not expressed
succinctly, but the direct substitution of Eqs. (74)-(78) into Eq. (73) does
not result in much simplification.

The evaluation of Eq. (73) from Egq. (72) involves extensive (but not
difficult) calculations, and a margin for error clearly exists. The
plausibility of Eq. (73), however, is suggested by several limiting cases.
First, as f—»0 (A»>»), Eq. (73) approaches the same limit for both
numbers e given above, as it must; that limit is

ﬂ_‘I:o = [(1 + pD{(1 + ph)/24 + p¥/3 + 6%/8} + 8(5 + 32p? + 5p)/36

— pi/0)/®? 79

This equation also describes the A-» behavior for the n # 1 case as well,
because ¥ becomes independent of the radial force as A—»o. (Inci-
dentally, Eq. 79 would also apply to a nonretained chromatographic
zone, if the channel were an ANNC.) Secondly, as p—0, ¥ equals

¥y0pe0 = 1/24 (80)

and the function x = ¥R/(1 — p,)? also equals 1/24. This number is the
expected result for a circular channel of diameter 2w (15), which the
ANNC becomes as p,—0. Finally, as p,—1, the ANNC becomes an OPPC
of width w, for which x must equal 1/105 as B—0 (II). A few expansions
are required to evaluate the p,—1 limit. If one defines

pp=1-y (81)



Downl oaded At: 12:57 25 January 2011

238 DAVIS
then

D=2"3+ - (82)

O =-2+2y—-y¥/3+ (¥ +y°/90 +37)%/3780 + - - - (83)

and

4

2 3 5 6 7
=~ Y4 ¥ Y VY Y
In p, (y+2+3+4+5+6+7>+ (84)

Substituting Egs. (81)-(84) into Eq. (79), one finds that the bracketed
expression [] in the latter equation approaches

limg,_.o[] = 4y%/945 + - - - (85)

and the function y, Eq. (24), approaches

L D -1 _1 '
SmX = M AT — et 479 105 (86)

as expected.
One needs the appropriate expression for retention ratio R to calculate
H from the above equations. This expression is (9)

_2( 20 2(1 = pd) 8
R ¢>(4ta (l—p?*”)(4iﬁ)+2tl3)’

B # 2, 4 for inner-wall retention (87)

Equations (87) and (73)-(78) approach the following limits as p—o
(A—0)

- __2 . -2
Rin - Bd, (29% + e)’ Rout B‘p (2 + e)s AL (88)
v, = (%)2 A<l (89)
v, = (3[‘;—')2, A<l (90)
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Combining Egs. (88)-(90) and Eq. (24), one finds that the y function
equals

8\’(In p,)’

Xou= gy T A b
_ =8_’~3(1“_Pn)ﬁ(zpz+e) A<l (92)
in (D(l _ P1)2 1 ’

when A < 1, where R, Ry, Wins Wous Xin» a0d X, are interpreted as before.
The limit of Egs. (91) and (92), as p,—>1, is 247}, in agreement with Eq.
).

Several singularities exist in Egs. (73)-(78) and (87) for the relatively
large B values, B = 2, 4, 6, and 8, when zones are retained near the inner
wall. Additional equations could be developed to account for these
singularities, as was done for retention ratio R (9). Because these f’s will
generally correspond to R values very near unity, however, the additional
(extensive) work required does not seem justified. If a plate height
corresponding to one of these f’s were ever required, it could be simply
estimated by interpolating between two H values, one calculated from a
slightly larger than, and the other calculated from a B slightly smaller
than, the singularity in question.

All computations were carried out on the IBM 3081 GX computer at
Southern Illinois University.

RESULTS AND DISCUSSION

Equations (53), (54), (91), and (92) can be written in the general form

x = Ng(py,n) (93)

where two functions g(p;,n) exist, one for inner-wall and one for outer-

wall retention. Taking the common logarithm of both sides of Eq. (93),
one obtains

logx = 3 logA + logg(p,,n) (94)

Thus, a plot of log ¥ vs log A, in the A range over which these equations

apply, is a straight line of slope 3 and intercept log g(p,,n).
Figures 2-5 are plots of log y, vs log A for the » values 5, 3, —1, and 1,
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FIG. 2. Plot of log x vs log A for n = 5 (e.g., shear FFF). For A < 1, the x, functions are, from
top to bottom: X, for py = 0.1,0.2, 0.4, 0.6, 0.8; ¥, (the central dashed curve); and ¥;q, for p;
= 0.8, 0.6, 04, 0.2, and 0.1.

and the p, values 0.8, 0.6, 0.4, 0.2, and 0.1. The bold dashed curve in the
center of each figure is y,, which corresponds to p, = 1. The solid curves
in Figs. 2-4 were computed numerically from Egs. (46) and (51) with
Simpson’s rule. (Some scaling of the integrals was required to prevent
numerical underflow and overflow.) The dashed lines in Figs. 2-4 were
evaluated from the analytical approximations, Egs. (53) and (54). The
solid curves in Fig. 5 were calculated from Egs. (73)-(78) and (87); the
dashed lines were determined from the approximations, Egs. (91) and
(92). The approximations are best when A < 1 and p, = 1 (i.e., when |a|
and g > 1).

Several trends can be deduced from Figs. 2-5. When A < 1, x;, < %, and
Xow > X» When n is positive, but x;, > x, and ., < X, when 7 is negative.
Furthermore, the differences between x;, and %, and x,,, and x,, increase
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F1G. 3. Plot of log x vs log A for n = 3 (e.g., dielectrophoretic and magnetophoretic FFF).
Otherwise, same as Fig. 2.

with decreasing p, and increasing |n|. These trends are comparable to
those deduced from similar plots of retention ratio R vs A (9). In addition,
as A-» and R—1, the functions y;, and Y, both approach the limiting y
value predicted by Egs. (24) and (79).

The dependence of y on A can be simply rationalized when A < 1. The
random-walk model of nonequilibrium dispersion predicts that the zone
variance ¢ of well-retained FFF zones is proportional to the product of
two terms: the time required for diffusive exchange among streamlines,
which varies as the square of the zone thickness, and the zone velocity,
which varies linearly with this thickness (18). Thus, H and y vary with the
cubic power of the zone thickness when A < 1. Furthermore, since the
zone thickness varies inversely with the local force near the accumulation
wall, which itself varies inversely with A, x varies as the cubic power of A,
as confirmed by Egs. (1), (53), (54), (91), and (92) when A < 1.
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FI1G. 4. Plot of log y vs log A for n = ~1 (e.g., sedimentation FFF). For A < 1, the x functions
are, from top to bottom: x;p, for py = 0.1, 0.2, 04, 0.6, 0.8; y, (the central dashed curve); and
Xoup for pp = 0.8, 0.6, 0.4, 0.2, and 0.1.

The thickness of zones in both OPPCs and ANNCs decreases as the
force strength near the accumulation wall increases. At constant A, the
radial force F, Eq. (4), is larger near the inner wall and smaller near the
outer wall of the ANNC than the uniform force F, in the OPPC when n is
positive. The force strengths are reversed when n is negative. Further-
more, the differences between F and F, near the accumulation wall
increase as p, decreases. When A < 1, the force strength in the immediate
vicinity of the accumulation wall principally determines the zone
thickness. As argued above, the values of the x functions are determined
by this zone thickness and, consequently, by these local force strengths
when A < 1.

As A-»c0, the behavior of the y functions cannot be justified by the
explanation given above, because the bulk of the zone is not localized
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HG. 5. Plot of log y vs log A for n = 1 (e.g,, thermal, flow, and electrical FFF). Otherwise,
same as Fig 2.

near the accumulation wall. For example, the ¥’s in Figs. 2-5 exhibit local
maxima near A % 0.1; the maxima are most pronounced when » is large
and positive and p, < 1. As A is further increased, the functions x,,, and ¥,
monotonically decrease to constant values. The function y;,, however,
either monotonically decreases to a constant value, or first decreases,
then passes through a minimum, and finally monotonically increases to
a constant value. The latter behavior is most pronounced for small p, and
small, especially negative, n.

When A < 1, the behavior of  is largely governed by the magnitude of
force F near the accumulation wall. The variation of the carrier velocity
across gap w increasingly dictates the behavior of y as A is increased. As A
is increased, a large fraction of the zone eventually relaxes into the chan-
nel midsection near the maximum carrier velocity. Here, the streamline
velocities are similar and do not strongly vary, as they do near the
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accumulation walls. The similarity of the streamline velocities outweighs
the increase in zone thickness, and yx decreases slightly, consequently
passing through a maximum.

The large maxima in y;, are observed when p; < 1 principally because,
as p; decreases, dV,/dp increases very near the inner wall, and the
maximum carrier velocity shifts toward the inner wall. (A plot of V,/V,)
vs channel width w for various p,’s is given in Ref. 9.) When p; < 1, y;,
increases rapidly with increasing A because the streamline velocities very
near the inner wall vary significantly. The increase is largest for large
positive n because the zone bulk is localized in this inner-wall region. As
A is further increased, the zone relaxes away from the wall; only a small
relaxation is required, when p; < 1, for the zone bulk to be entrained by
streamlines with similar velocities near the carrier maximum. The result
is a rapid decrease in y;,. The minima in ¥, are observed, possibly
because in these cases the zone is principally localized near the velocity
maximum. This explanation seems more plausible for small, rather than
large, positive n and most plausible for negative n, because in this case the
zone concentration is actually higher in the maximum velocity region
than near the inner ANNC wall. The minima are indeed most pro-
nounced for negative n.

A comparison of Figs. 2-5 to similar plots of log R vs log A in Ref. 9
shows that, at constant A and p,, the departure of H from H, is much
greater than the departure of R from R,. This behavior is observed (at
least for small A) because R depends on the first power of the
characteristic zone thickness, whereas H depends, as observed above, on
the third power of this thickness.

In general, the ANNC offers definite advantages over the OPPC when
R <R, and H < H,. Most significantly, the peak capacity of the ANNC is
greater than that of the OPPC under these conditions, and multicom-
ponent mixtures may be more efficiently resolved. Based on this study,
and the previous one on the retention ratio R, one can conclude that R
and especially H favorably depart from their parallel-plate counterparts
when n is large, p, is small, and zones form near the inner ANNC wall,
for n > 0, and near the outer wall, for » < 0. The differences can be
exploited by decreasing p, to small values, although some shortcomings
exist when p, <1 (9). The advantage is perhaps most significant for shear
FFF (n = 5) because the shear force always focuses components near the
inner ANNC wall where R and H are pronouncedly less than R, and H,,.
Little advantage is expected for dielectrical FFF (n = 3), however,
because pearl-chain formation is expected to limit extensively inner-wall
retention (19). Magnetic FFF (n = 3) is likely to be subject to the same
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limitation, although this subject has not been eamined in detail. Smaller
advantages are anticipated for electrical, thermal, and flow FFF (n = 1)
and sedimentation FFF (n = —1), but such advantages are realizable by
judicious design of the ANNC and control over the experimental
conditions.

GLOSSARY

(2—RD +20/2 + B))/(2 + B)

coefficient indicating magnitude and direction of force F
annular channel

2/(4 £ B)

concentration

quasi-equilibrium concentration

26/2 + B)

diffusion coefficient

effective diffusion coefficient defined by Eq. (16)
Eq. (77) for inner-wall retention, and Eq. (78) for outer-wall
retention

friction coefficient, kT/D

radial force, A/r"

constant force in OPPC

valueof p at p = &

nonequilibrium plate height of zones in ANNCs
nonequilibrium plate height of zones in OPPCs
Boltzmann’s constant

zone thickness in OPPCs

average distance of zone migration

power to which 7 is raised in equation for force F
one-dimensional radial flux

one-dimensional axial flux

open parallel-plate channel

radial coordinate

inner radius of ANNC

outer radius of ANNC

retention ratio of zones in ANNCs

R for inner-wall retention

R for outer-wall retention

retention ratio of zones in OPPCs

time
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absolute temperature

radial velocity of zone constituents induced by force F
axial velocity of carrier fluid

average velocity of carrier fluid

channel width

work required to carry zone constituents across gap w
apl-n

axial coordinate

1/(Mpi™ — 1))

=(A1ln p)™

lower integration limit of ¥ integral

S value, expressed in terms of variable x

fractional departure of ¢ from c*

(1-p)/np

kT/|W]

reduced velocity, V,/v

average zone velocity

reduced radial coordinate, r/r,

r / r

that fraction of the total zone variance originating from
differential axial flow

function of £ on which ¥ depends

1+pi+0

nonequilibrium coefficient in equation, H = ywXV,)/D
x coefficient for inner-wall retention

x, coefficient for outer-wall retention

x coefficient for parallel-plate channel
nonequilibrium coefficient in equation, H = ¥riv/D
¥ coefficient for inner-wall retention

¥ coefficient for outer-wall retention

¥ coefficient for parallel-plate channel
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